Las imágenes de fondo de ojo son muy utilizadas por los oftalmólogos para la evaluación de la retina y la detección de glaucoma. Esta patología es la segunda causa de ceguera en el mundo, según estudios de la Organización Mundial de la Salud (OMS).
En esta tesis doctoral, se estudian algoritmos de aprendizaje automático (machine learning) para la evaluación automática del glaucoma usando imágenes de fondo de ojo. En primer lugar, se proponen dos métodos para la segmentación automática. El primer método utiliza la transformación Watershed Estocástica para segmentar la copa óptica y posteriormente medir características clínicas como la relación Copa/Disco y la regla ISNT. El segundo método es una arquitectura U-Net que se usa específicamente para la segmentación del disco óptico y la copa óptica.
A continuación, se presentan sistemas automáticos de evaluación del glaucoma basados en redes neuronales convolucionales (CNN por sus siglas en inglés).
En este enfoque se utilizan diferentes modelos entrenados en ImageNet como clasificadores automáticos de glaucoma, usando fine-tuning. Esta nueva técnica permite detectar el glaucoma sin segmentación previa o extracción de características. Además, este enfoque presenta una mejora considerable del rendimiento comparado con otros trabajos del estado del arte.
En tercer lugar, dada la dificultad de obtener grandes cantidades de imágenes etiquetadas (glaucoma/no glaucoma), esta tesis también aborda el problema de la síntesis de imágenes de la retina.
Ver fuente de origen – Información completa
Comentarios recientes